弦切角定理证明

时间:2024-10-13 10:16:17

1、定理内容:顶点C在圆上一边BC与圆相交,一边CD与圆相吨易坌荐切的角叫弦切角(∠BCD)。则弦切角BCD与其夹着的弧BC所对的圆周角CAB相等。

弦切角定理证明

2、辅助线:做一条圆O的过点C的直径交圆于C、G,连BG

弦切角定理证明

3、由于等弧对等角,所以∠BAC=∠CGB

弦切角定理证明

4、由于∠GBC所对的弦为直径,所以∠GBC=∠HCD=90°

弦切角定理证明

5、在△CBG中,∠CBG+∠CGB=∠BCH=∠BCD+∠HCD(外角定理)所以∠C蘅荫酸圉GB=∠BCD所以∠BCD=∠CAB得证

弦切角定理证明
© 2025 智德知识库
信息来自网络 所有数据仅供参考
有疑问请联系站长 site.kefu@gmail.com